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Abstract
Purpose – As the transmission component of a locomotive, the traction gear pair system has a direct effect
on the stability and reliability of the whole machine. This paper aims to provide a detailed dynamic analysis
for the traction system under internal and external excitations by numerical simulation.
Design/methodology/approach – A non-linear dynamic model of locomotive traction gear pair system
is proposed, where the comprehensive time-varying meshing stiffness is obtained through the Ishikawa
formula method and verified by the energy method, and then the sliding friction excitation is analyzed based
on the location of the contact line. Meantime, the adhesion torque is constructed as a function of the adhesion-
slip feature between wheelset and rail. Through Runge–Kutta numerical method, the system responses are
studied with varying bifurcation parameters consisting of exciting frequency, load fluctuation, gear backlash,
error fluctuation and friction coefficient. The dynamic behaviors of the system are analyzed and discussed
from bifurcation diagram, time history, spectrum plot, phase portrait, Poincaré map and three-dimensional
frequency spectrum.
Findings – The analysis results reveal that as control parameters vary the system experiences complex
transition among a diverse range of motion states such as one-periodic, multi-periodic and chaotic motions.
Specifically, the significant difference in system bifurcation characteristics can be observed under different
adhesion conditions. The suitable gear backlash and error fluctuation can avoid the chaotic motion, and thus,
reduce the vibration amplitude of the system. Similarly, the increasing friction coefficient can also suppress
the unstable state and improve the stability of the system.
Originality/value – The numerical results may provide a systemic understanding of dynamic
characteristics and present some available information to design and optimize the transmission performance
of the locomotive traction system.
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Nomenclature
u i, Ii = angular displacement and moment of inertia of two gears;
rbi, rai, ri = radius of base, addendum and pitch circles of two gears;
cm, k(t), Fj = meshing damping, time-varying meshing stiffness and meshing force of gear

pair;
Ff, Fw = sliding friction force and adhesion force;
T1, T2 = driving torque and adhesion torque;
d Br, d Bt, d S, d G, d p = bending deformation of rectangular portion, bending deformation of trapezoi-

dal part, shear deformation, sloping deformation and contact deformation;
E, B,v = Young’s modulus, face width and Poisson’s ratio;
Fn = load in normal plane;
k1(t), k1(t ), k2(t), k2(t ) = meshing stiffness and the corresponding dimensionless stiffness in single or

double teeth meshing area;
k2m,k1m, a2(1), b2(1) = Fourier series coefficient of dimensionless meshing stiffness;
tm, td, ts = meshing period, double-tooth meshing period and single-tooth meshing

period;
z , « = proportionality coefficient and contact ratio;
U, Uh, Ub, Ua, Us, Uf = total potential energy, Hertzian energy, bending energy, shear energy energy,

axial compressive energy and gear fillet-foundation energy;
kh, kb, ks, ka, kf = Hertzian stiffness, bending stiffness, shear stiffness, axial compressive stiff-

ness and gear fillet-foundation stiffness;
e(t), em, ea = meshing transmission error, mean value and fluctuation value;
b, f(x) = half of backlash, non-linear displacement function;
lj1, lj2 = frictional force arms of two gears;
Sj = moved distance of the j-th pair of teeth;
N = maximum value of meshing teeth at the same time;
l j, mB, = direction coefficient of friction force and coefficient of sliding friction;
Tf1, Tf2 = friction moments of two gears;
R, Q, v , vL = radius, mass and instantaneous, angular velocity of wheel and driving speed

of locomotive;
s, sm, m , mm, km = creep ratio and critical creep rate, adhesion coefficient and its maximum value

and the negative slope of adhesion curve;
me1,me2 = equivalent mass of two gears; and
vn, t = natural frequency and dimensionless time.

1. Introduction
With the accelerating demands of high speed, heavy load and low vibration in railway
transportation, the safe operation of the locomotive is facing serious challenges. Traction
gear pair system as the key component of locomotive directly influences the dynamic
performance and stability of the entire train (Zhang et al., 2019a, 2019b). Because of the
internal and external excitations, the traction device is a complex system with strong non-
linearity, which may become unpredictable and uncontrollable excited by vibration
response. Based on these traits, there is a demand to gain a thorough understanding of the
dynamic behaviors of the traction gear pair system in the locomotive. In this study, we focus
on the comprehensive analysis of a typical traction gear pair system under internal and
external excitations, to provide some guidance for the design and control of the locomotive
traction system.

The dynamics of the gear pair system have been carried out extensively. A torsional
model of gear pair system was built by Kahraman and Singh (1990), where the meshing
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stiffness was time-invariant in the model. Similarly, Shen et al. (2006) built a torsional
mathematical model for a spur of gear pair with the consideration of transmission error,
meshing stiffness and gear backlash, and then the effects of damping and excitation
amplitude on the dynamic behaviors were researched. Based on a purely torsional gear
system, Walha et al. (2006) analyzed the influence of gear backlash on the dynamic behavior
and observed the amplitude jumps phenomenon. Then, Wang et al. (2007) performed
systematically analysis of the non-linear dynamic characteristics of a hypoid gear pair with
non-linearity of backlash and time-invariance. Moradi and Salarieh (2012) investigated the
non-linear oscillations of gear pairs with gear backlash. Meantime, the influences of system
parameters on the dynamic transmission error amplitude were obtained. Chang-Jian (2013)
reported the gear system responses under the non-linear conditions, and the results
indicated that the system experienced rich motion states such as periodic, sub-harmonic,
quasi-periodic and chaotic responses. Farshidianfar and Saghafi (2014a, 2014b, 2014c) used
a torsional dynamics model of a spur gear pair to study first the bifurcation and chaos
characteristic and then suppress the chaotic response of gear system by non-feedback
control method. The comprehensive analysis of gear system motion states was performed
by Li et al. (2014) considering time-varying stiffness, backlash, transmission error and
external excitation and the effects of control parameters above on system responses were
discussed. Accordingly, the previously published papers above focus on the study of
dynamics of gear pair with meshing stiffness, transmission error and backlash, where the
meshing stiffness is time-invariant sometimes. Furthermore, it is always ignored the effect
of tooth surface friction or the coupled interaction between friction and meshing stiffness on
the dynamics of the gear system. Vaishya and Singh (2001a, 2001b) established early a
single degree-of-freedom dynamic model of gear pair considering friction, while the meshing
stiffness was simplified to be a square wave. He et al. (2007, 2008) analyzed the influences of
friction and meshing stiffness on the transmission error and provided an empirical formula
for calculation of friction force. Based on a dynamic model for the gear system with sliding
friction, Wang et al. (2012) investigated the dynamic behavior with friction and non-friction.
However, the friction force in signal and double teeth meshing area could not be considered
comprehensively. Wang et al. (2017) presented that the friction force was expressed as the
product of friction coefficient and meshing force, while the directional coefficient was
ignored. According to the above discussions, even though there exists an analysis of the
dynamics of the gear system considering meshing stiffness and friction condition in many
studies, the meshing stiffness is often simplified and the friction model could not reflect
factually the dynamic change of friction force.

Quite a few studies on the dynamics of the locomotive with and without gear
transmission system have been investigated in the past few decades. Zhai et al. (2013)
modeled a fundamental model for dynamics analysis of the train–track–bridge coupled
system to predict the dynamic behaviors of the coupled system by computer simulation.
Wang et al. (2016) proposed an excitation model of rail spalling failure to analyze the
characteristics of wheel-rail dynamic vibration according to the theory of vehicle-rail
coupled dynamics. In the two papers above, they are concentrated on the analysis of
dynamic responses of the vehicle with the effect of external excitations. Apparently, many
efforts have been performed in dynamic analysis of locomotive or train considering the
effect of the traction gear system. For the purpose of describing the dynamic behaviors for a
locomotive with saturated adhesion, Yao et al. (2011) used the notions of mean and dynamic
slip rate to analyze the stability and characteristics of stick-slip vibration. Subsequently,
Yao et al. (2015) analyzed the relationship between vibration amplitude and stability of
stick-slip vibration, which studied the influences of traction system suspension parameters
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on the re-adhesion performance of locomotive. Huang et al. (2015) established a dynamic
model of motor cars including a traction system to research the influence of the internal
excitation of traction system on the dynamic performance of the train, where the meshing
stiffness and gear transmission error were taken into account in the model. Considering gear
transmissions, Chen et al. (2017a) developed a locomotive–rail vertical model, and
the dynamic feature of the whole system with the excitations from the wheel–rail and/or the
gear mesh interface was carried out by numerical simulations. To research further, the
coupling interactions between the gear transmission motion and wheelset, Chen et al.
(2017b) proposed a locomotive-track vertical-longitudinal coupled dynamic model. Then, the
dynamic responses of the locomotive under the tractive conditions were performed by
numerical simulation and experimental tests. Recently, with consideration of the dynamic
effects of the gear system, Zhang et al. (2019a, 2019b) proposed a locomotive-rail coupled
spatial dynamic model, in which the dynamic interactions of motions from the power
transmission system and locomotive components are comprehensively included. Likewise,
there exist some works in terms of dynamics of the traction gear system in railway
locomotive. Zhao et al. (2009) presented the dynamic models for the locomotive driving
system. The self-excited torsional vibration for the traction system was investigated by
using MATLAB/SIMULINK. To avoid severe vibration leading to shaft damage, Cao et al.
(2016) provided a two-mass model of the drive system and researched the influence
parameters of vibration frequency and amplitude by simulation. However, the two dynamic
models above are unduly simplified into two lumped mass. Wang et al. (2017) analyzed the
effects of the rotational speed of driving pinion and support stiffness on the dynamic
response of the locomotive driving system based on the proposed system model, while the
friction force is neglected. In addition, to describe system behaviors, Wang et al. (2017) built
a simulation model for locomotive traction system with sliding friction and carried out the
analysis about the effect of tooth surface friction on system stability. However, the friction
excitation is only expressed as the proportional function of the meshing force without
consideration direction coefficient.

As mentioned above, it is still necessary to investigate the non-linear dynamics of
locomotive traction system considering the effect of excitations including time-varying
meshing stiffness, sliding friction and adhesion torque comprehensively though the
dynamics of gear pair system or locomotive have studied previously. Thus, the purpose of
this study is to propose a dynamic model for locomotive traction gear pair system under
internal and external excitations aroused by backlash, transmission error, time-varying
meshing stiffness, friction force and adhesion torque, and then use it to analyze the system
responses. The differential equation for the traction system is calculated using the Runge–
Kutta method. Meantime, the dynamic responses of the system are determined from the
bifurcation diagram, time history, spectrum plot, phase portrait, three-dimensional
frequency spectrum and Poincaré map. The following structure of this paper is listed: in
Section 2, the locomotive traction gear system is described to exhibit its structure type and
operating principle. Then, the internal and external excitations are investigated in Section 3
and Section 4, respectively. Subsequently, the dynamic equations of the locomotive traction
gear system are derived by Newton’s laws of motion in Section 5. Section 6 discusses the
non-linear dynamic responses for the traction system of the locomotive with the influences
of control parameters. Finally, some brief conclusions are presented in Section 7.

2. Description of locomotive traction gear pair system
The traction gear system of a representative locomotive mostly consists of traction motor,
coupling, driving gear, driven gear, wheelset and so forth, which can be seen in Figure 1(a).
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As the power part of locomotive, the traction system is used to transmit the driving torque
generated by traction motor to wheelset via gear-pair, which makes the locomotive running
or braking.

To research the dynamic behavior of the traction gear system conveniently, some
assumptions are provided as follows:

� The meshing gears are involute spur gears, in which meshing force is simplified as
the spring-damping force and is always in the meshing plane;

� The transmission shafts and bearings that support gears are inflexible; and
� The gears are assumed to be rigid, where only the torsional displacement of gear

system is considered.

Then, the simplified traction system model is illustrated in Figure 1(b). In the dynamic
model, u i, Ii and rbi (i = 1, 2) are the angular displacements, the moment of inertia and radius
of base circles of the driving and driven gears. cm and k(t) are the meshing damping and
stiffness of gear-pair, respectively. Ff stands for the sliding friction force between the two
gears. In addition, T1 is the driving torque of the gear system, which is considered to keep
constant. T2 represents the load torque, namely, adhesion torque caused by adhesion
characteristics between wheelset and rail.

3. Internal excitations
3.1 Time-varying meshing stiffness
During the gear meshing process, the number of meshing tooth varies, leading to the
time-varying characteristic of meshing stiffness, which has an important effect on the
dynamic response of the gear system. It is the pre-condition of dynamics analysis for
gear systems to calculate the time-varying meshing stiffness accurately. At present,
there appear several calculation methods of meshing stiffness mainly consisting of
Ishikawa method (Shi et al., 2013), finite element method (Tamminana and Kahraman,
2006), energy method (Tian, 2004; Chen and Shao, 2011; Wan et al., 2014) and so forth,
which have different characters. The energy method is widely used to obtain the mesh
stiffness of the cracked gear system. The finite element method can simulate the
meshing process factually, while it will take too much time. In this study, the meshing
stiffness of the healthy gear pair is analyzed through the Ishikawa method, which is
verified with the energy method.

3.1.1 Calculation meshing stiffness with Ishikawa method. According to Ishikawa
method, gear tooth is usually simplified as a cantilever beam that is combined with a

Figure 1.
Structural schematic
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trapezoid and a rectangular, in which the length of rectangular is defined as the dangerous
section of gear tooth that is calculated by 30-degree tangent method, as shown in Figure 2.

The deformation of the single tooth along the direction of the meshing line can be
expressed as:

d ¼ d Br þ d Bt þ d S þ d G (1)

where d Br, d Bt, d S and d G represent the bending deformation of the rectangular portion,
bending deformation of trapezoidal part, deformation produced by shear and the
deformation caused by the sloping of the basic part, respectively, which can be represented
by:

d Br ¼ 12Fncos2v x

EBs3F
hxhr hx � hrð Þ þ h3r

3

� �

d Bt ¼ 6Fncos2v x

EBs3F

hi � hx
hi � hr

4� hi � hx
hi � hr

� �
� 2ln

hi � hx
hi � hr

� 3
� �

hi � hrð Þ3

d s ¼ 2 1þ �ð ÞFncos2v x

EBsF
hr þ hi � hrð Þln hi � hr

hi � hx

� �

d G ¼ 24Fnhx cos2v 2

pEBs2F
(2)

Here E, B and v refer to Young’s modulus, face width and Poisson’s ratio, respectively.
To conclude, the total deformation of meshing teeth along the direction of action can be

expressed as:

d R ¼ d 1 þ d 2 þ d p (3)

where d 1 and d 2 are the deformation of each tooth, respectively, and d P refers to the
deformation of the tooth contact segment (Li et al., 2010), which can be described as:

Figure 2.
The simplified model
of gear tooth using
Ishikawamethod
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d p ¼ 4 1� v2ð ÞFn

pEB
(4)

Hence, the meshing stiffness of single tooth pair k1(t) can be represented by:

k1 tð Þ ¼ Fn

d R
(5)

However, single and double teeth pair always mesh alternately in the actual meshing process.
Apparently, the combination meshing stiffness of gear pair is made up of instantaneous meshing
stiffness of each tooth pair involved in themeshing process, which is influenced by contact ratio.

In Figure 3, the meshing period tm consists of double-tooth meshing period td and single-
tooth meshing period ts. In addition, z is defined as a proportionality coefficient, which can
be represented by:

z¼ td
tm

(6)

The relationship between the proportionality coefficient z and contact ratio « is:

z¼«�1 (7)

Hence, the integrated time-varying meshing stiffness k(t) of gear pair can be described as:

k tð Þ ¼ k2ðtÞ 2td
k1ðtÞ ts

�
(8)

Where k2(t) is the meshing stiffness in the double teeth meshing area.
In equation (8), the formula contains the single and double teeth meshing stiffness during

meshing progress, which is used to calculate the time-varying mesh stiffness. The gear system
parameters and material characteristics are listed in Tables I and II. Through solving the above
equations, the single and double meshing stiffness curves are presented in Figure 4, respectively.
Thus, the time-varyingmesh stiffness of the traction gear pair system is obtained in Figure 5.

During the meshing process, the comprehensive meshing stiffness exhibits a remarkable
periodicity, which can be expanded by the way of Fourier series and then can be written
with non-dimensional parameter as follows:

k tð Þ ¼
k2m þ

Xn
p¼1

a2pcos pvtð Þ þ b2psin pvtð Þ� �
0 <t # 1:463p

k1m þ
Xn
q¼1

a1qcos qvtð Þ þ b1qsin qvtð Þ� �
1:463p<t # 2p

8>>>>><
>>>>>:

(9)

Figure 3.
Scheme of meshing
period of tooth pair
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Where k2(1)m, a2(1) and b2(1) are the coefficient values of Fourier series, respectively. Here,
only the first- and third-order Fourier series are considered, in which the corresponding
coefficients are listed in Table III.

Then, the curve of gear meshing stiffness with three dimensionless meshing period is
shown in Figure 6.

3.1.2 Validation of meshing stiffness. To verify the accuracy of the meshing stiffness,
the result from the Ishikawa method will be compared with that from the energy
method (Tian, 2004; Chen and Shao, 2011; Wan et al., 2014). According to the energy
method, the total potential energy U stored in gear system during meshing process
includes five parts: Hertzian energy Uh, bending energy Ub, shear energy Us, axial
compressive energy Ua and gear fillet-foundation energy Uf, which can be expressed as
follows:

Uh ¼ F2

2kh
; Ub ¼ F2

2kb
; Us ¼ F2

2ks
; Ua ¼ F2

2ka
; Uf ¼ F2

2kf
(10)

Table I.
Main parameters of
the traction system of
locomotive

Parameter Driving/driven gear

Contact ratio « 1.732
Transmission ratio 5.217
Number of teeth z1/z2 23/120
Radius of reference circle r (mm) 92/480
Modulem (mm) 8
Pressure angle a (°) 20
Face width B (mm) 140
Driving torque T1 (N·m) 5� 103

Mass of wheel axle Q (N) 2.3� 105

Wheel radius R (m) 0.625

Table II.
Material
characteristics of
gear

Parameter Value

Material 18CrNiMo
Density r (kg·m�3) 7,870
Young’s modulus E (Gpa) 207
Poisson’s ratio v 0.26

Figure 4.
Themeshing
stiffness curves under
the double-tooth
meshing period (a)
and single-tooth
meshing period (b),
respectively
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Where kh, kb, ks, ka and kf refer to the Hertzian stiffness, bending stiffness, shear stiffness,
axial compressive stiffness and gear fillet-foundation stiffness, respectively, and F is the
load acting on the meshing point.

Therefore, the total potential energy U stored in a pair of meshing teeth can be
written as:

Figure 5.
The curve of time-
varyingmeshing
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Table III.
Coefficients of
Fourier series

Order Coefficient

k2(1) m 9.62� 10�1 (6.56� 10�1)
a2(1) 1 8.13� 10�2 (3.91� 10�2)
b2(1) 1 5.96� 10�2 (9.1� 10�3)
a2(1) 2 �2.8� 10�3 (�3.8� 10�3)
b2(1) 2 �1.35� 10�2 (�1.2� 10�3)
a2(1) 3 �9� 10�4 (4� 10�4)
b2(1) 3 1.3� 10�3 (4� 10�5)

Figure 6.
The curve of gear
meshing stiffness

with dimensionless
time from Ishikawa

method 
0 2 4 6 8 10 12

0.6

0.7

0.8

0.9

1

1.1

τ

k
(τ

)

Locomotive
traction gear
pair system

2595



www.manaraa.com

U ¼ F2

2k1
¼ Uh þ Ub1 þ Us1 þ Ua1 þ Uf1 þ Ub2 þ Us2 þ Ua2 þ Uf2

¼ F2

2
1
kh

þ
X2
i¼1

1
kbi

þ 1
ksi

þ 1
kai

þ 1
kfi

� � ! (11)

Where k1 denotes the total stiffness in single teeth meshing area, which can be
expressed as:

k1 ¼ 1

1
kh
þ
X2
i¼1

1
kbi

þ 1
ksi

þ 1
kai

þ 1
kfi

� � (12)

Here i is equal to 1 or 2, which stands for driving or driven gear.
Because of the contact ratio, there exists the alternation meshing between the single tooth

and double teeth, the time-varying mesh stiffness k2 in the double teeth meshing area can
thus, be expressed as:

k2 ¼
X2
j¼1

1

1
kh
þ
X2
i¼1

1
kbi

þ 1
ksi

þ 1
kai

þ 1
kfi

� � (13)

Where j is 1 or 2, which refers to the j-th pair of meshing teeth.
Solving equations (12) and (13) from the energy method, thus the meshing stiffness can

be obtained as shown in Figure 7. Meantime, Table IV presents the comparison of meshing
stiffness error from two kinds of methods, where the relative error is less than 4 per cent.
Therefore, the accuracy of the time-varying meshing stiffness based on the Ishikawa
method is acceptable.

Blue line results from Ishikawamethod and red line from energymethod.

Figure 7.
The curve of gear
meshing stiffness
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3.2 Meshing transmission error
The meshing transmission error of gear pair is mainly caused by tooth manufacturing error
and installation error. It makes the meshing tooth profile to deviate from the theoretical
meshing position, destroying the correct meshing way of the involute gear and changing the
instantaneous transmission ratio, which can result in the generation of the gear error
excitation. Accordingly, the error excitation (Kahraman and Singh, 1991) can be expressed
by harmonic functions:

e tð Þ ¼ em þ
X1
r¼1

cncos rv t þ dnsin rv tð Þ (14)

Where em is the mean error. cn and dn are the expansion coefficient of the Fourier series.
Only considering the first-order, the equation (14) can be simplified as (Xu et al., 2013):

e tð Þ ¼ em þ ea cos v t þ wð Þ (15)

Where em shows the average term, ea represents the fluctuation and w refers to the initial
phase angle.

3.3 Gear backlash
In general, gear backlash is caused by gear lubrication and errors in manufacturing, as well
as installation, which would make the meshing contact of gear pair change between contact
and separation state. Hence, backlash should be considered in the system. Thus, the relative
deformation f(x) of the meshing teeth can be described as:

f xð Þ ¼
x� b x> b

0 jxj# b

xþ b x< �b

8>><
>>: (16)

Where b refers to the half of gear backlash and x is the relative displacement of the teeth
along the mesh line.

3.4 Friction excitation
Figure 8 shows the diagrammatic drawing of the meshing gear pair at the end surface.
In Figure 8, rai and ri (i = 1, 2) represent the radius of addendum and pitch circles,
respectively. B1 and B2 are the departure and terminal points of the theoretical meshing line,
respectively. A1 and A2 are the departure and terminal points of the actual meshing line,
respectively. Meantime, l is the length of the actual meshing line. l2 refers to the distance
from pitch point P to ending pointA2 of the actual meshing line.

Table IV.
Comparison of

meshing stiffness
error

Item Value from Ishikawa/energy method

Maximum stiffness in single teeth meshing (109 N/m) 3.128/3.238
Relative error (%) 3.497
Mean value of meshing stiffness (109 N/m) 4.314/4.480
Relative error (%) 3.847
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According to the geometric relationship between the two gears (Lu et al., 2015), the physical
parameters can be written as:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a1 � r2b1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a2 � r2b2

q
� r1 þ r2ð Þsina

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a1 � r2b1

q
� r2sina

lj1 ¼ r1 þ r2ð Þsina �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a2 � r2b2

q
þ Sj

lj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a2 � r2b2

q
� Sj

8>>>>>>>>>><
>>>>>>>>>>:

(17)

Where lj1 and lj2 represent the frictional force arms of two gears. Sj is defined as the distance
that the j-th pair of teeth (j = 1, 2, . . ., N) moves path when entering into the meshing region
during time t, which can be performed as:

Sj ¼ v 1rb1 mod t; tmð Þ þ j� 1ð Þtm
� �

(18)

HereN stands for the maximum value of teeth involved in meshing at the same time and can
be obtained as:

N ¼ ceil «ð Þ (19)

During meshing process of gears, the meshing point moves along the meshing line,
where the instantaneous radius of curvature at the contact point, the relative sliding
velocity of contact surface of two teeth, and contact load are all changing, leading to the
variation of the magnitude and direction of friction force. Accordingly, the friction force
can be given by:

Ff ¼
XN
j¼1

Ffj ¼
XN
j¼1

l jmBFj (20)

Figure 8.
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Here l j refers to the direction coefficient of friction force, mB stands for the coefficient of
sliding friction and Fj represents meshing force, which can be expressed as:

Fj ¼ kj tð Þ � f xð Þ þ cm � dx
dt

(21)

The coefficient of sliding friction mB is calculated using Buckingham semi-empirical
formula (Qin et al., 2015), which can be described as:

mB ¼ 0:05e�0:003175vs þ 3:187� ffiffiffiffi
vs

p
(22)

Where vs is the relative slip velocity between gears.
Additionally, the direction coefficient of friction force l j adopts the following expression:

l j ¼
1 0 < Sj < l1

0 l < Sj < NPt

�1 l1 < Sj < l

8>><
>>: (23)

Then, the friction moments of two gears can be obtained as:

Tf1 ¼
XN
j¼1

Tfj1 ¼
XN
j¼1

Ffi � lj1

Tf2 ¼
XN
j¼1

Tfj2 ¼
XN
j¼1

Ffj � lj2

8>>>>>><
>>>>>>:

(24)

4. External excitation
During running, the locomotive is driven by the adhesion force generated between wheelset
and rail. As a result, the adhesion-slip feature between wheelset and rail has a direct
influence on the driving and braking performance of the locomotive. Because of the relative
sliding of wheel/rail resulting in friction force, the adhesion phenomenon occurs. In other
words, when the relative sliding happens, the instantaneous velocity of the locomotive is not
equal to the linear speed of wheelset. Thus, creep ratio s is introduced to describe the sliding
state, which is defined as follows:

s ¼ vR� vL
vR

(25)

Where R refers to the radius of the wheel,v represents the instantaneous angular velocity of
the wheel and vL is the driving speed of the locomotive.

When the relative movement between wheel and rail appears, the contact condition is
always composed of the adhesion zone and slip zone, as shown in Figure 9. As creep ratio s
is zero, the wheelset is completely in the adhesion zone, which indicates that the wheelset
runs by the way of pure rolling, as seen in Figure 9(a). Later, with the increase of s slightly,
the adhesion zone is reduced a bit and the sliding zone is increased. However, the adhesive
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zone is still the main contact area, as seen in Figure 9(b). Subsequently, with the change of s
continuously, the slip zone becomes the main contact area, in which the adhesion force keeps
increasing as s increases. Then, the adhesion force reaches the maximum when s increases
to the critical value that makes the contact area becomes the whole slip zone, as shown in
Figure 9(d). The slippage process can be revealed by the polyline O-A-B-C from Figure 10.

However, the actual research (Yao et al., 2011) represents that the adhesion force decrease
gradually when the creep ratio increases further from the critical value, as the wheel-rail
friction heat and rail surface roughness increase. The phenomenon can be observed from the
polyline O-A-B-D in Figure 10. Based on the actual condition, the adhesion coefficient curve
between wheel and rail is simplified as seen in Figure 11. For analytical convenience, the
simplified adhesion coefficient curve in Figure 11 is divided into two parts. The condition
that the creep ratio lies in the region of s< sm is seen as Case I. The other range of creep ratio
is defined as Case II. Thus, the simplified adhesion coefficient curve can be described by the
following function:

m¼
mms=sm Case I

mm þ km s� smð Þ Case II

(
(26)

Where mm refers to the maximum adhesion coefficient and sm is the critical creep rate
corresponding to mm. In addition, km is the negative slope of the adhesion curve.

Therefore, the adhesion force Fw and load torqueT2 can be represented by:

Figure 9.
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Fw ¼ mQ

T2 ¼ FwR
(27)

WhereQ represents the axle load of the wheelset.
Substituting equation (26) into equation (27), the load torque T2 can be transformed into

the following expressions:

T2¼
mmRQs=sm Case I

mmRQþ RQkm s� smð Þ Case II

(
(28)

5. Equations of motion
Figure 1 presents the simplified torsional lumped parameter model of the traction system.
Thus, the differential equations of motion of the system can be described as follows:

I1
d2u 1

dt2
¼ T1 � rb1

XN
j¼1

Fj � Tf1

I2
d2u 2

dt2
¼ �T2 þ rb2

XN
j¼1

Fj þ Tf2

8>>>>>><
>>>>>>:

(29)

The relative displacement x along the meshing line with x = rb1u 1 � rb2u 2 � e(t) is
introduced, so that the equation (29) can then be expressed as:

d2x
dt2

þ 1
me1

þ 1
me2

� �XN
j¼1

Fj þ 1
rb1me1

Tf1 þ 1
rb2me2

Tf2

� �

¼ 1
rb1me1

T1 þ 1
rb2me2

T2 � d2e tð Þ
dt2

(30)

Whereme1 ¼ I1=r2b1 andme2 ¼ I2=r2b2.
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Substituting equations (20), (24) and (28) into equation (30), the equation (30) can be rewritten
as:

d2x
dt2

þ 1
me

cm � H1 tð Þ þ cm � H2 tð Þð Þ dx
dt

þ 1
me

k1 tð Þ � H1 tð Þ þ k2 tð Þ � H2 tð Þð Þ � f xð Þ

¼
F1

me1
þ mmRQs

me2sm
� d2e tð Þ

dt2
s<sm

F1

me1
þ 1
me2

mmRQþ RQkm s� smð Þ
 �� d2e tð Þ
dt2

sm<s< 1

8>>>><
>>>>:

(31)

Where

me ¼ me1me2

me1 þme2
H1ðtÞ ¼ 1þ l 1mBmeð l11

rb1me1
þ l12
rb2me2

Þ

H2ðtÞ ¼ 1þ l 2mBme
l21

rb1me1
þ l22
rb2me2

� �

Subsequently, the two dimensionless symbol t with t = vnt and bc are introduced as well,
where v n¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
km=me

p
is the natural frequency. The dimensionless displacement, velocity

and acceleration of the system can be expressed, respectively, as follows: x = Xbc,
dx
dt ¼ dX

dt bcvn, d
2x
dt2 ¼ d2X

dt2 bcv
2
n and X = v /vn. Therefore, equation (31) can be represented in

the dimensionless form:

d2X
dt2

þ 2j H1 tð Þ þ H2 tð Þ
 � dX
dt

þ 1
km

k1 tð ÞH1 tð Þ þ k2 tð ÞH2 tð Þ
 �
f Xð Þ

¼

F1

bcme1v 2
n
þ mmRQs
bcme2v 2

nsm
� FaX

2cos Xtð Þ s<sm

F1

bcme1v 2
n
þ 1
bcme2v 2

n
mmRQþ RQkm s� smð Þ
 �� FaX

2cos Xtð Þ sm<s< 1

8>>>><
>>>>:

(32)

where

j ¼ cm
2mevn

Fa ¼ ea=bc f Xð Þ ¼
X � D X >D

0 jXj#D

X þ D X < �D

8>><
>>:

6. System response and discussions
To control the motion response and improve the running stability of the locomotive traction
gear pair system, it is extremely indispensable to understand comprehensively the dynamic
characteristic of the system.
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In this section, exciting frequencyX, load torqueT2, gear backlashD, error fluctuation Fa
and friction coefficient uB are chosen to be the control parameters to analyze the influences
on the dynamic behaviors of the traction system. Meanwhile, to identify and discuss exactly
the dynamic responses of the system, bifurcation diagram, time history, three-dimensional
frequency spectrum, phase portrait, spectrum plot and Poincaré map are presented. A case
study about a kind of locomotive is introduced to analyze, in which the main system
parameters are listed in Table I.

6.1 Effect of exciting frequency and load torque on dynamic response
In the subsection, a detailed study is performed to reveal the influence of exciting frequency
X and load torque T2 on the dynamic response. As the main external excitation, load torque
T2 is the paramount factor that can affect the dynamic characteristic of the traction system.
Owing to the piecewise trait of load torque, which can be verified from equation (28), the
dynamic feature of the driving system would be analyzed under Cases I and II, respectively.
Keeping other system parameters constant, Figures 12(a) and 12(b) present the bifurcation
diagrams of the traction system with dimensionless exciting frequency X varying under
Cases I and II, respectively. Meanwhile, to clearly determine the frequency component of
motion state for the system, the corresponding three-dimensional frequency spectrums are
demonstrated in Figures 13(a) and 13(b). In these figures, the exciting frequency X is under
the range of 0-2.5, where the corresponding rotational speed of driving gear changes from 0
to 2,250 r/min.

As seen in Figures 12(a) and 12(b), the bifurcation characteristics of exciting frequencyX
versus displacement X show obvious difference under Cases I and II. From Figure 12(a), in

Figure 12.
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the range of exciting frequency X < 1.18, the system gets into p-1 (periodic-one) motion,
where the jump discontinuous phenomenon appears at X = 0.68. Further increasing X, the
system turns into p-2 motion. Then, the system response transits to chaotic behavior. When
X increases even further, the motion form changes from chaos to p-2 state. Finally, the
system reverts to p-1 motion. However, the dynamic responses of the traction system
become rich and complex under Case II, which can be observed from Figure 12(b). At low
values of exciting frequency, namely, X < 0.54, the system is also under p-1 motion. As X
increases, it gets into a narrow window of p-2 state. Then, the motion returns once again to
the p-1 motion. Similarly, there is a crisis phenomenon at X = 0.62 during p-1 motion, which
is similar under Case I. When X changes further, the system turns into p-2 motion, which
can be shown in Figure 14 with X = 0.78. From the figure, it shows that phase diagram has
two sealed circles and there are also two individual points in the Poincaré map. These
results signify that the system is under p-2 motion. As X increases to 0.83, the system
response is p-4 motion in Figure 15. With X keeps increasing, the system transits to a
chaotic state. As an example, when X is equal to 0.9, the time history concerning
displacement is irregular, spectrum plot possesses a multitude of different and continuous
frequency components, the phase diagram demonstrates disorder pattern and a number of
discrete points appear in Poincaré map, as illustrated in Figures 16(a)-16(d). These features
reveal the system is in an unstable state. After undergoing the brief process of chaos, the
system switches to period motion. For instance, at X = 0.93, the wave of vibration
displacement shows the period motion, phase diagram is composed of several closed circles
and Poincaré map consists of seven discrete points in Figure 17, which indicates the system
response is in multi-period motion. The system then transfers into chaos again, which can be
shown in Figure 18. Finally, the dynamic behavior of the system is found to be p-2 and p-1
motions.

Figure 14.
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Figure 15.
System response at
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From Figures 13(a) and 13(b), it could be observed that the frequency components in
Figure 13(b) are more complex than those in Figure 13(a). In the range of 0 < X < 1, there
exist two types of main frequency components in Figure 13(a), namely, X and 0.5X.
However, the continuous and intricate frequency components appear sometimes under X <
1 in Figure 13(b), which can be seen in Figure 16(b) at X = 0.9. Similarly, the width of
window that the complex and disordered frequency component would occur is wider when
X is under the region (1, 2) in Figure 16(b) than that in Figure 16(a), which can be identified
from the corresponding bifurcation diagrams in Figure 12 as well.

The above results have shown that the transition process of motion states of the system
is more complicated under Case II, especially where the window of chaotic motion become
wider. Under chaotic motion, the system becomes invariably unpredictable and
uncontrollable. Therefore, to avoid complex dynamic behaviors of system appear and keep
locomotive running stably, the load torque T2 should be less than the critical value. In other
words, the value of adhesion coefficient should be chosen with the range of 0 < s < sm,
which can prevent the self-excited vibration of traction system (Yao et al., 2015).

Figure 18.
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Figure 16.
System response at
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Figure 17.
System response at

X = 0.93
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6.2 Effect of gear backlash on dynamic response
Because of manufacturing accuracy, installation error, thermal expansion of gear teeth and
the request of gear lubrication, gear backlash always exists in the traction gear pair system,
which can aggravate the degree of non-linear characteristic of system. Thus, gear backlash
has an important impact on the system behavior. With the purpose of examining the
influence of gear backlash on the system response, a particular analysis is performed, in
which the bifurcation diagram of gear backlash D as control system under Case I is obtained
in Figure 19(a). Meantime, the corresponding three-dimensional frequency spectrum is
shown in Figure 19(b) to exhibit the frequency component with the change of gear backlash.

From Figure 19(a), it can be clearly noted that the system would go through a complex
evolution process of motion states including single periodic, multi-periodic and chaotic
motions as gear backlash D changes. At low values of D, the system undergoes p-1 motion,
which can be found in Figure 20. In Figures 20(a) and 20(b), at D = 0.1, these display that
time history of displacement is a sine curve and spectrum plot only contains two types of
frequency components. Besides, there is a closed circle in the phase diagram and a single
point appears in Poincaré graph as observed in Figures 20(c) and 20(d), which manifest the
system is under p-1 motion. As D continues to increase, the motion response changes to p-2
state. Then, when D reaches to 0.15, the system enters into the chaotic state, where there
appears complex and continuous harmonic components near 0.5X in spectrum plot and the
fractal structure composed by numerous discrete points exists in Poincaré map as illustrated
in Figures 21(b)-21(d). Before going into the next window of chaos, a short window of p-4
motion is observed. Choosing D = 0.18, the corresponding dynamic response can be seen in
Figure 22, which can obviously determine that the system is at p-4 state. When D further

Figure 20.
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increases to 0.21, the system gets into the chaos again as shown in Figure 23, where the
dynamic response is similar to the result in Figure 21. As D keeps increasing, the response
motion enters into multi-period state. Specifically, after the chaotic motion, the system first
goes into p-4 state, then switches to p-2 and further returns into p-4, finally, transits to p-6
motion at D = 0.30 in Figure 24. With the increasing of D even further, the system response
is transited from period motion to chaos, as shown in Figure 25. Finally, the system is
always under period motions, which can be found in Figures 26 and 27.

In Figure 19(b), three-dimensional frequency spectrum shows intuitively the change of
the frequency components of the system with gear backlash D varying. As D < 0.25, the
meshing frequency X is dominated response, as illustrated in Figures 20(b)-24(b). In the
range of D < 0.45, the system would undergo three window region of chaos, where there
are continuous frequency components as shown in Figures 21(b), 23(b) and 25(b). In
addition, when D > 0.45, the multiplication frequency and de-multiplication frequency
components appear in spectrum plot, in which the phenomenon can be seen in
Figure 27(b) as D = 0.8.

Figure 22.
System response at

D= 0.18
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Figure 21.
System response at

D= 0.15
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Figure 23.
System response at

D= 0.21
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According to the above analysis, the varying gear backlash D can give rise to rich
bifurcation characteristics. However, under chaotic motion, the system becomes unstable
and unpredictable. Herein, gear backlash should be selected adequately to make the system
stable, where the above results could furnish the theoretical basis (Figures 23-27).

6.3 Effect of error fluctuation on dynamic response
As a displacement excitation, the transmission error is triggered by manufacturing error
and installation error during meshing, which can impact the dynamic characteristics of the
traction system. To demonstrate the point, a case study is analyzed where the error
fluctuation Fa is used as the control parameter and the others keep a constant value. Herein,
the bifurcation diagram and the corresponding three-dimensional frequency spectrum as Fa
varies are shown under Case I in Figure 28.

As illustrated in Figure 28(a), the bifurcation features of the system are changed with the
increasing error fluctuation Fa. When Fa is at a low value, the motion state of the system is

Figure 24.
System response at
D= 0.30
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Figure 25.
System response at
D= 0.34
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Figure 26.
System response at
D= 0.44
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period motion. Choosing Fa = 0.12, the dynamic behavior is presented in Figure 29. The
time-domain wave is a periodic curve, spectrum plot has three obvious amplitudes, phase
diagram possess two closed circle and there are two points in Poincaré map, which clearly
demonstrate the system is in p-2 motion. Keeping Fa increasing, it gets into the chaos state,
as observed in Figure 30, in which there appears a disorder in phase diagram and numerous
discrete points exit in the Poincaré map. However, when Fa reaches 0.27, the wave in
Figure 31(a) shows a regular curve, the meshing frequency is dominated response in
Figure 31(b), the phase diagram in Figure 31(c) shows disorder pattern, and there exist four
points in the Poincaré map in Figure 31(d), indicating the system is under p-4 motion. Then,
as Fa increases further, the system response becomes chaotic again. When Fa is equal to 0.3,

Figure 27.
System response at

D= 0.8
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Figure 28.
Bifurcation
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dimensional

frequency spectrum (b)
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Figure 29.
System response at

Fa = 0.12
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the dynamic response in Figure 32 verifies the motion form of the system. Finally, the
system returns to period motion. For instance, at Fa=0.70, it is under p-2 motion, which can
be observed in Figure 33. Although always under the p-1 motion with the increasing of Fa
even further, the amplitude of displacement of the system increases significantly as well. In

Figure 30.
System response at
Fa = 0.2
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Figure 31.
System response at
Fa = 0.27
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Figure 32.
System response at
Fa = 0.3
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Figure 33.
System response at
Fa = 0.7
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Figure 28(b), at low values of Fa, the response peak appears in fractional frequency, namely,
0.5X. With the increase of Fa, the exciting frequency becomes the dominated response
frequency, where the amplitude atX increases as well.

These above analysis results show that error fluctuation Fa can affect directly the motion
state of the traction system. Accordingly, the value of Fa should be set reasonably to avoid
chaos motion or/and large vibration amplitude.

6.4 Effect of friction coefficient on dynamic response
Considering the sliding friction force, the dynamics responses of traction gear pair system
would show the different features than those without friction. To analyze the vibration
response of traction systemwith or without friction force, the friction coefficient uB is chosen
as the control parameter. Keep other parameters be constant, the bifurcation diagram of the
system with uB varying in the range [0, 0.1] is indicated in Figure 34(a) based on the built
model, while the bifurcation diagram in Figure 34(b) is obtained according to the method
from reference (Wang et al., 2017). With the increase of uB, the gear pair system exhibits
periodic-n and chaotic motions state, and the system displacement decrease gradually,
which can be observed from Figure 34(a). Meantime, Figure 34(b) presents a similar
variation tendency of displacement, while there shows different bifurcation characteristics
owing to the friction force formula without consideration of the direction coefficient.

To show further the dynamic response of the system considering the effect of
friction, Figures 35(a), 12(a) and 35(b) depict the bifurcation diagrams with exciting

Figure 34.
Bifurcation diagrams
of friction coefficient

uB versus
displacement by the
method in the study
(a) and the reference

(Wang et al., 2017) (b),
respectively
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frequency varying under different friction coefficient, namely, uB = 0, 0.03 and 0.1,
respectively. The corresponding three-dimensional frequency spectrums are shown
in Figures 36(a), 13(a) and 36(b). As seen in the three bifurcation diagrams, the width
of window of chaotic motion become narrow as uB increases, which means system
with friction trends to be stable. It can be verified from the corresponding three-
dimensional frequency spectrums that the region of disordered frequency component
reduces and the maximum vibration amplitude decrease as uB increases.

Under different friction coefficient, the system response with the same exciting
frequency can show different motion forms. When exciting frequency X is equal to
initial value, the system with friction coefficient uB = 0 (blue line) or uB = 0.1 (red line) is
in p-1 motion as shown in Figure 37. However, the response amplitude without friction
is slightly larger than that with friction coefficient uB = 0.1. As X increases, the system
without friction enters into p-2 motion earlier as shown in Figure 38. For instance, at X
= 1, there exists two discrete blue points and a discrete red point in Poincaré map of
Figure 38(d), which indicates the system with friction or with friction coefficient uB =
0.1 is under p-2 or p-1 motion, respectively. Meantime, the vibration amplitude with
friction is obviously greater than that with friction. Then, with increase of X from 1.15
to 1.91, the system response without friction changes to chaotic motion, while the
system with friction undergoes complex motion transformation including p-1, p-n and
chaotic motions. For example, the system with friction starts with p-1 motion and then

Figure 37.
System response at
X = 0.2
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Figure 36.
Three-dimensional
frequency spectrums
of the traction system
with friction
coefficient uB = 0 (a)
and uB = 0.1 (b)
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transits to p-2 motion in Figure 39 and p-8 motion in Figure 40 and further goes through
the chaotic state in Figure 41, and finally, reduces to p-2 or p-1 motion. Certainly, the
system without friction or with friction reverts to p-1 motion at last, as shown in
Figure 42. According to the analysis above, the sliding friction has an important effect
on the dynamic response of traction system, which can suppress the vibration
amplitude and control unstable state of system.

7. Conclusions
This study presents a simulation model for locomotive traction gear system subjected
to internal and external excitations such as backlash, time-varying meshing stiffness,

Figure 39.
System response at

X= 1.5
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Figure 40.
System response at

X = 1.56
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Figure 38.
System response at

X = 1
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static transmission error, adhesion torque and tooth face friction and then carries out a
numerical analysis of the system. Though adopting Ishikawa formula method, the
comprehensive meshing stiffness is performed, where the results is compared by
energy method. Based on the actual meshing contact location, tooth surface friction
torque are both derived. Additionally, the adhesion-slip character of wheel/rail is
analyzed to obtain the adhesion torque. Exciting frequency X, load torque T2, gear
backlash D, error fluctuation Fa and friction coefficient uB are used as control
parameters to investigate the influences on the dynamic behaviors of the traction
system. The system responses are discussed and analyzed by time history, bifurcation
diagram, spectrum plot, Poincaré map phase portrait and three-dimensional frequency
spectrum.

The numerical results represent that the traction system goes through complex
motion states including period-one, multi-period and chaos when exciting frequency
changes. Furthermore, the bifurcation characteristics of system using exciting
frequency as control parameter under Cases I and II are notably different. To ensure
locomotive running steadily and reliably, the adhesion condition between wheel and
rail should always lie in Case I. The varying gear backlash could switch the state
responses of system, even causing the chaotic motion. Likewise, as error fluctuation
increases, the motion forms of system starts with periodic motion, and then chaos,
and finally, goes back to periodic motion. However, when error fluctuation is major,
the system may be still under the unstable state because of severe vibration. As
friction coefficients uB increases, the window of chaotic motion becomes narrow and
the vibration amplitude decreases. Thus, the proper value of system parameters
should be specified so that the vibration amplitude can be reduced and the chaos even
can be avoided.

Figure 42.
System response at
X = 2.4
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Figure 41.
System response at
X = 1.8
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